ABSTRACT
Several animal models of tinnitus have been developed in the past 20 years. The premise
on which these models are based is that chronic tinnitus is most likely a primitive
hearing disorder. Because no evidence indicates that higher-order cognitive skills
are required to experience tinnitus, it is also likely that animals such as laboratory
rats can experience tinnitus. Chronic tinnitus in humans commonly emerges after peripheral
auditory damage caused by exposure to loud sound, ototoxic agents, or aging. Tinnitus
can be induced in animals using the same treatments. A significant advantage of using
animals to study tinnitus is that the etiology of their disorder can be carefully
controlled in a laboratory setting, a difficult task in human clinical studies. Although
animals cannot describe their tinnitus verbally, their perception of sound, both objective
and subjective, can be measured using psychophysical procedures. Furthermore, sensory
processing and brain function can be determined with great detail in animals using
a variety of measures. Over the past decade we have used our animal model of tinnitus
to examine many fundamental aspects of tinnitus, including its sensory features, the
time course of development, interactions with aging, neurophysiological correlates
from cochlea to brain, and pharmacological treatment.
KEYWORDS
Animal model - chronic tinnitus - tinnitus pathology - tinnitus treatment
REFERENCES
- 1
Dobie R A.
A review of randomized clinical trials in tinnitus.
Laryngoscope.
1999;
109
1202-1211
- 2 Meikle M B, Creedon T A, Griest S E. Tinnitus archive 2004, second edition. Available at: http://www.tinnitusArchive.org/ Accessed July 14, 2008
- 3
Nondahl D M, Cruickshanks K J, Wiley T L, Klein R, Klein B E, Tweed T S.
Prevalence and 5-year incidence of tinnitus among older adults: the epidemiology of
hearing loss study.
J Am Acad Audiol.
2002;
13
323-331
- 4
Ries P W.
Prevalence and characteristics of persons with hearing trouble: United States, 1990–91.
Vital Health Stat 10.
1994;
(188)
1-75
- 5
Benson V, Marano M A.
Current estimates from the national health interview survey, 1995.
Vital Health Stat 10.
1998;
(199)
1-428
- 6
Axelsson A, Ringdahl A.
Tinnitus—a study of its prevalence and characteristics.
Br J Audiol.
1989;
23
53-62
- 7
Cooper Jr J C.
Health and nutrition examination survey of 1971–75: Part II. Tinnitus, subjective
hearing loss, and well-being.
J Am Acad Audiol.
1994;
5
37-43
- 8
Epidemiology of tinnitus, Medical Research Council's Institute of Hearing Research.
Ciba Found Symp.
1981;
85
16-34
- 9
Coles R R, Hallam R S.
Tinnitus and its management.
Br Med Bull.
1987;
43
983-998
- 10 Davis A, Rafaie E A.
Epidemiology of tinnitus. In: Tyler RS Tinnitus Handbook. San Diego; Singular Publishing Group 2000: 13-14
- 11
Sindhusake D, Mitchell P, Newall P, Golding M, Rochtchina E, Rubin G.
Prevalence and characteristics of tinnitus in older adults: the Blue Mountains Hearing
Study.
Int J Audiol.
2003;
42
289-294
- 12
Stouffer J L, Tyler R S.
Characterization of tinnitus by tinnitus patients.
J Speech Hear Disord.
1990;
55
439-453
- 13
Shulman A.
Clinical classification of subjective idiopathic tinnitus.
J Laryngol Otol Suppl.
1981;
(4)
102-106
- 14
Shulman A.
A final common pathway for tinnitus—the medial temporal lobe system.
Int Tinnitus J.
1995;
1
115-126
- 15
Bauer C A.
Animal models of tinnitus.
Otolaryngol Clin North Am.
2003;
36
267-285
- 16
Bauer C A, Brozoski T J, Myers K.
Primary afferent dendrite degeneration as a cause of tinnitus.
J Neurosci Res.
2007;
85
1489-1498
- 17
Bauer C A, Brozoski T J, Myers K S.
Acoustic injury and TRPV1 expression in the cochlear spiral ganglion.
Int Tinnitus J.
2007;
13
21-28
- 18
Bauer C A, Brozoski T J, Rojas R, Boley J, Wyder M.
Behavioral model of chronic tinnitus in rats.
Otolaryngol Head Neck Surg.
1999;
121
457-462
- 19
Brozoski T J, Bauer C A.
The effect of dorsal cochlear nucleus ablation on tinnitus in rats.
Hear Res.
2005;
206
227-236
- 20
Brozoski T J, Bauer C A, Caspary D M.
Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with
psychophysical evidence of tinnitus.
J Neurosci.
2002;
22
2383-2390
- 21
Brozoski T J, Ciobanu L, Bauer C A.
Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic
resonance imaging (MEMRI).
Hear Res.
2007;
228
168-179
- 22
Bauer C A, Brozoski T J.
Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal
model.
J Assoc Res Otolaryngol.
2001;
2
54-64
- 23
Brozoski T J, Spires T J, Bauer C A.
Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal
model.
J Assoc Res Otolaryngol.
2007;
8
105-118
- 24
Eggermont J J, Roberts L E.
The neuroscience of tinnitus.
Trends Neurosci.
2004;
27
676-682
- 25
Moller A R.
Similarities between severe tinnitus and chronic pain.
J Am Acad Audiol.
2000;
11
115-124
- 26
Tonndorf J.
The analogy between tinnitus and pain: a suggestion for a physiological basis of chronic
tinnitus.
Hear Res.
1987;
28
271-275
- 27
Jastreboff P J, Brennan J F, Coleman J K, Sasaki C T.
Phantom auditory sensation in rats: an animal model for tinnitus.
Behav Neurosci.
1988;
102
811-822
- 28 Stebbins W. Animal Psychophysics. New York, NY; Appleton, Century, Crofts 1970
- 29 Smith J.
Conditioned suppression as an animal psychophysical technique. In: Stebbins WC Animal Psychophysics. New York, NY; Appleton-Century-Crofts 1970:
125-159
- 30
Penner M J, Brauth S, Hood L.
The temporal course of the masking of tinnitus as a basis for inferring its origin.
J Speech Hear Res.
1981;
24
257-261
- 31
Guitton M J, Caston J, Ruel J, Johnson R M, Pujol R, Puel J L.
Salicylate induces tinnitus through activation of cochlear NMDA receptors.
J Neurosci.
2003;
23
3944-3952
- 32
Jastreboff P J, Brennan J F, Sasaki C T.
An animal model for tinnitus.
Laryngoscope.
1988;
98
280-286
- 33
Lobarinas E, Sun W, Cushing R, Salvi R.
A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia
avoidance conditioning (SIP-AC).
Hear Res.
2004;
190
109-114
- 34
Ruttiger L, Ciuffani J, Zenner H P, Knipper M.
A behavioral paradigm to judge acute sodium salicylate-induced sound experience in
rats: a new approach for an animal model on tinnitus.
Hear Res.
2003;
180
39-50
- 35
Kaltenbach J A, Afman C E.
Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its
resemblance to tone-evoked activity: a physiological model for tinnitus.
Hear Res.
2000;
140
165-172
- 36
Liberman M C.
Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral
cochlear nucleus.
J Comp Neurol.
1991;
313
240-258
- 37
Ryugo D K, Rouiller E M.
Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric
correlations with physiological properties.
J Comp Neurol.
1988;
271
130-142
- 38 Lockwood A H, Burkard R F, Salvi R J.
Imaging tinnitus. In: Snow JB Jr Tinnitus: Theory and Management. Hamilton, Canada; BC Decker 2004:
255-264
- 39
Melcher J R, Sigalovsky I S, Guinan Jr J J, Levine R A.
Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal
inferior colliculus activation.
J Neurophysiol.
2000;
83
1058-1072
- 40 de Kleine E, Lanting C, Bartels H, Langers D, van Dijk P. Cortical and subcortical
fMRI of unilateral tinnitus. Advances in tinnitus assessment, treatment and neuroscience basis
. Presented at: Advances in Tinnitus Assessment, Treatment & Neuroscience Basis June
22–24, 2007 Grand Island, NY;
- 41
Osaki Y, Nishimura H, Takasawa M et al..
Neural mechanism of residual inhibition of tinnitus in cochlear implant users.
Neuroreport.
2005;
16
1625-1628
- 42
Pautler R G.
Biological applications of manganese-enhanced magnetic resonance imaging.
Methods Mol Med.
2006;
124
365-386
- 43
Silva A C, Lee J H, Aoki I, Koretsky A P.
Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical
considerations.
NMR Biomed.
2004;
17
532-543
- 44
Yu X, Wadghiri Y Z, Sanes D H, Turnbull D H.
In vivo auditory brain mapping in mice with Mn-enhanced MRI.
Nat Neurosci.
2005;
8
961-968
- 45
Milatovic D, Yin Z, Gupta R C et al..
Manganese induces oxidative impairment in cultured rat astrocytes.
Toxicol Sci.
2007;
98
198-205
- 46
Carr C E, Fujita I, Konishi M.
Distribution of GABAergic neurons and terminals in the auditory system of the barn
owl.
J Comp Neurol.
1989;
286
190-207
- 47
Fisher S K, Davies W E.
GABA and its related enzymes in the lower auditory system of the guinea pig.
J Neurochem.
1976;
27
1145-1155
- 48
Kemmer M, Vater M.
The distribution of GABA and glycine immunostaining in the cochlear nucleus of the
mustached bat (Pteronotus parnellii).
Cell Tissue Res.
1997;
287
487-506
- 49
Palombi P S, Caspary D M.
GABA inputs control discharge rate primarily within frequency receptive fields of
inferior colliculus neurons.
J Neurophysiol.
1996;
75
2211-2219
- 50
Park T J, Pollak G D.
GABA shapes a topographic organization of response latency in the mustache bat's inferior
colliculus.
J Neurosci.
1993;
13
5172-5187
- 51
Pfeuffer J, Tkac I, Choi I Y et al..
Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during
infusion of [1–13C] D-glucose.
Magn Reson Med.
1999;
41
1077-1083
- 52
Tkac I, Starcuk Z, Choi I Y, Gruetter R.
In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time.
Magn Reson Med.
1999;
41
649-656
- 53
Mattson R H, Petroff O, Rothman D, Behar K.
Vigabatrin: effects on human brain GABA levels by nuclear magnetic resonance spectroscopy.
Epilepsia.
1994;
35(Suppl 5)
S29-S32
- 54
Novotny Jr E J, Fulbright R K, Pearl P L, Gibson K M, Rothman D L.
Magnetic resonance spectroscopy of neurotransmitters in human brain.
Ann Neurol.
2003;
54(Suppl 6)
S25-S31
- 55 Bauer C A, Brozoski T J.
Gabapentin. In: Langguth B, Hajak G, Kleinjung T, Cacace A, Møller AR Tinnitus: Pathophysiology
and Treatment. New York, NY; Elsevier 2007: 287-301
- 56
Zapp J J.
Gabapentin for the treatment of tinnitus: a case report.
Ear Nose Throat J.
2001;
80
114-116
- 57
Bauer C A, Brozoski T J.
Effect of gabapentin on the sensation and impact of tinnitus.
Laryngoscope.
2006;
116
675-681
- 58
Witsell D L, Hannley M T, Stinnet S, Tucci D L.
Treatment of tinnitus with gabapentin: a pilot study.
Otol Neurotol.
2007;
28
11-15
- 59
Piccirillo J F, Finnell J, Vlahiotis A, Chole R A, Spitznagel Jr E.
Relief of idiopathic subjective tinnitus: is gabapentin effective?.
Arch Otolaryngol Head Neck Surg.
2007;
133
390-397
Thomas J BrozoskiPh.D.
Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School
of Medicine
P.O. Box 19629, SIU School of Medicine, Springfield, IL 62794-9629
Email: tbrozoski@siumed.edu